Cyclic Causal Models with Discrete Variables: Markov Chain Equilibrium Semantics and Sample Ordering
نویسندگان
چکیده
We analyze the foundations of cyclic causal models for discrete variables, and compare structural equation models (SEMs) to an alternative semantics as the equilibrium (stationary) distribution of a Markov chain. We show under general conditions, discrete cyclic SEMs cannot have independent noise; even in the simplest case, cyclic structural equation models imply constraints on the noise. We give a formalization of an alternative Markov chain equilibrium semantics which requires not only the causal graph, but also a sample order. We show how the resulting equilibrium is a function of the sample ordering, both theoretically and empirically.
منابع مشابه
Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملDirected cyclic graphs, conditional independence, and non-recursive linear structural equation models
Recursive linear structural equation models can be represented by directed acyclic graphs. When represented in this way, they satisfy the Markov Condition. Hence it is possible to use the graphical d-separation to determine what conditional independence relations are entailed by a given linear structural equation model. I prove in this paper that it is also possible to use the graphical d-separ...
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013